

Bioenergy and Waste-to-Energy Solutions for Sustainable Hospital Energy Management

A. Saranya, S Sivaganesan
MUTHAYAMMAL ENGINEERING COLLEGE,
HOLY MARY INSTITUTE OF TECHNOLOGY AND
SCIENCE

Bioenergy and Waste-to-Energy Solutions for Sustainable Hospital Energy Management

¹A. Saranya, Assistant Professor, Department of Electrical and Electronics Engineering, Muthayammal Engineering college, Rasipuram, Namakkal Dt, Tamilnadu, India. saranyaperiyasamyeee@gmail.com

²S Sivaganesan, Professor, Department of Electrical and Electronics Engineering, Holy Mary Institute of Technology and Science, Hyderabad, Telangana, India. siva_phd@outlook.com

Abstract

Healthcare facilities are among the most resource-intensive infrastructures, facing growing challenges in balancing operational reliability with environmental sustainability. Rising energy demands, coupled with increasing volumes of biomedical and organic waste, necessitate innovative approaches that can address both issues simultaneously. This chapter explores the potential of bioenergy and waste-to-energy (WTE) technologies as integrated solutions for sustainable hospital energy management. It critically examines biological and thermochemical conversion pathways, evaluates process efficiencies, and presents methodologies for system design, spatial integration, and regulatory compliance. Emphasis is placed on modeling techniques, energy output assessments, and the critical role of waste segregation, pretreatment, and safe transport in optimizing system performance, environmental and safety considerations are discussed in the context of healthcare-specific regulatory frameworks. Case insights and technical evaluations demonstrate how WTE systems can transform healthcare waste liabilities into reliable sources of clean energy. The analysis highlights both the technical feasibility and the institutional prerequisites necessary for deployment, particularly in urban and resource-constrained medical settings. This comprehensive study contributes to advancing low-carbon healthcare infrastructure by positioning bioenergy as a viable component of decentralized, resilient, and sustainable energy ecosystems for medical institutions.

Keywords: bioenergy, healthcare waste, waste-to-energy, hospital energy systems, sustainable infrastructure, thermal conversion

Introduction

The healthcare sector is a critical infrastructure domain that operates under stringent energy reliability requirements and generates substantial volumes of waste, both hazardous and non-hazardous [1]. With hospitals functioning 24/7 and relying heavily on uninterrupted power for life-support equipment, sterilization systems, diagnostic laboratories, and HVAC operations, their energy consumption is significantly higher than that of other institutional buildings [2]. In parallel, hospital activities result in diverse waste streams, including biodegradable food and garden waste, plastics, paper products, chemical residues, and clinical waste, which must be carefully managed to prevent environmental and public health risks [3]. This dual challenge of high energy dependency and waste accumulation presents an opportunity to explore integrated technological

solutions that address both simultaneously, improving sustainability, efficiency, and resilience across healthcare systems. Bioenergy and waste-to-energy (WTE) technologies present promising pathways for mitigating these intertwined challenges [4]. These systems enable the conversion of organic and mixed waste materials into usable forms of energy, such as electricity, thermal energy, or fuel, through biological or thermochemical processes. Anaerobic digestion, fermentation, combustion, pyrolysis, and gasification are among the key technologies employed for energy recovery in waste treatment systems [5].

The implementation of WTE technologies in hospitals, is complex and requires a multidimensional approach that addresses system design [6]. Waste segregation, feedstock pretreatment, energy conversion efficiency, environmental compliance, and safety regulations [7]. Biomedical waste poses specific challenges due to its potential infectious nature and the need for specialized treatment methods before any energy recovery process, the integration of such systems must consider space constraints, ventilation requirements [8], emissions control to ensure that operations do not interfere with healthcare delivery or compromise the well-being of patients and staff [9]. Therefore, feasibility assessments must incorporate architectural planning, load forecasting, and waste composition analysis to align energy output with hospital demand profiles and regulatory standards [10].